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Abstract

A new local search heuristic, called J-MEANS, is proposed for solving the minimum
sum-of-squares clustering problem. The neighborhood of the current solution is defined
by all possible centroid-to-entity relocations followed by corresponding changes of as-
signments. Moves are made in such neighborhoods until a local optimum is reached.
The new heuristic is compared with two other well-known local search heuristics, K-
MEANS and H-MEANS as well as with H-MEANS+, an improved version of the latter in
which degeneracy is removed. Moreover, another heuristic, which fits into the Variable
Neighborhood Search metaheuristic framework and uses J-MEANS in its local search
step, is proposed too. Results on standard test problems from the literature are re-
ported. It appears that J-MEANS outperforms the other local search methods, quite
substantially when many entities and clusters are considered.

1 Introduction

Consider a set X = {z1,...,zn}, z; = (z1j,...,%¢;) € R? of N entities (or points) in
Euclidean space RY. The minimum sum-of-squares clustering (MSSC) problem is to find
a partition Pys of X into M disjoint subsets (or clusters) C; such that the sum of squared
distances from each object z, to the centroid T; of its cluster C; is minimum. This problem
is among the most studied in cluster analysis and has numerous applications in engineering,
medicine and both natural and social sciences. It is known to be NP-hard (Brucker, 1978).

Let Py denote the set of all partitions of X. Then MSSC can be expressed as

follows: .
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fori=1,2,..., M.



Beside this combinatorial formulation there are several mathematical programming
ones, described in du Merle et al. (1997). Exact methods of branch-and-bound type
(Koontz, Narendra and Fukunaga, 1975, Diehr, 1985), allow solution of small problems
only, unless the clusters are far apart. A recent algorithm (du Merle et al., 1997) combines
several tools of mathematical programming (column generation, the ACCPM interior point
method of Goffin, Haurie and Vial, 1992, hyperbolic and quadratic 0-1 programming, and
variable neighborhood search) and leads to exact solution of MSSC problem with up to
150 entities (including the famous iris of Fisher, 1936).

However, numerous data sets have several hundred or thousand entities and hence
heuristics are still needed. Moreover, heuristics are also important components of exact
methods. Among the many heuristics for MSSC proposed in the literature the best known,
and most used, appear to be K-MEANS (Jancey 1966, Mac Queen, 1967) and H-MEANS
(Howard, 1966).

Recently, heuristics for MSSC which are not blocked in the first local optimum
found and which fit into various metaheuristics frameworks have been proposed. They
use simulated annealing (Klein and Dubes, 1989), tabu search (Al-Sultan, 1995), genetic
search (Babu and Murty, 1993) or variable neighborhood search (du Merle et al., 1997).

In this paper we first remain in the simpler framework of local search methods.
Such methods proceed from an initial solution through a series of local improvements, to a
locally optimal solution. A brief revision of the steps of K-MEANS and H-MEANS completes
this introduction. In the next section we propose an improved version of H-MEANS which
removes the degeneracy (empty clusters) problem.

In Section 3 we propose a new descent local search heuristic called J-MEANS. Here
a cluster centroid z; is relocated to some unoccupied entity location. Since this move
corresponds to several reassignments (or K-MEANS moves) and, in contrast with the small
and often ineffective centroid moves entailed by a single reassignment, can be large we refer
to it as a jump move. Obviously, solutions obtained could be improved by H-MEANS-+
and/or K-MEANS heuristics. It turns out that the most efficient hybrid is with both
H-MEANs+ and K-MEANS. We denote it with J-MEANS+. In Section 4, we embed this
heuristic into the variable neighborhood search metaheuristic framework (Mladenovié 1995,
Mladenovi¢ and Hansen 1997, Hansen and Mladenovié¢ 1998). Two variants are developed,
which use J-MEANS or J-MEANS+ in their local search step. In Section 5 computer results
on four standard test problems from the literature are reported, while Section 6 concludes
the paper.

K-MEANS works as follows. An initial partition (C1,...,Cy,) is chosen at random.
Then reassignments of one entity at a time are considered. Assume an entity z; that
belongs to cluster Cy in the current solution is reassigned to some other cluster C;, (£ # 7).
The centroids of these new clusters can be easily obtained from the following updating
formulas (Spath, 1980):
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where n; = |C;| and ny = |Cy|. The change in the objective function value caused by this

move is
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Such changes are computed for all possible reassignments. If they are all non-negative the
heuristic stops with a locally minimum partition. Otherwise, the reassignment reducing
most the objective function value is performed and the procedure iterated.

H-MEANS works as follows. An initial partition (C1,...,Cy) is chosen at random
and centroids Z1, ..., Ty of its clusters are computed. Then each entity z; (j =1,...,N) is
assigned (reallocated) to its closest centroid Z; (1 = 1,..., M); if no change in assignments
occurs, the heuristic stops with a locally minimum partition. Otherwise, the centroids are
updated and the procedure iterated.

It should be noted that the solution obtained by K-MEANS cannot be improved by
H-MEANS (or H-MEANS+), but that the solution obtained by H-MEANS can be improved
by K-MEANS. Indeed, if no entity can be profitably reallocated to some other cluster
than its own in the K-MEANS solution, it is assigned to its closest cluster centroid, hence
the partition is a local minimum for H-MEANS too. This suggests to use H-MEANS+
followed by K-MEANS and not the reverse. We shall denote such a two-phase heuristic by
HK-MEANS.

2 Modification of H-MEANS (H-MEANS+)

Since the iterations of the H-MEANS heuristic consist of alternate entity allocation (or as-
signment) and centroid relocation phases, it is similar to Cooper’s (1963) Alternate heuristic
for the Multisource Weber (or Location-Allocation) Problem and to Maranzana’s heuristic
(1963) for the p-Median problem, both well-known in Operations Research. Let us begin
by stating precisely the steps of H-MEANS:

Step 1. Initialization. Let C;, 1 = 1,..., M, be the initial partition of the set X, and let
T; be the corresponding centroids.

Step 2. Assignment. Assign (allocate) each entity z; (7 = 1,..., N) to its closest centroid
Z, i=1,...,M).

Step 3. Local optimality test. If no change in assignments occurs, a locally optimal
partition is found and Stop.

Step 4. Updating. Update centroids Z; of each cluster C;, and return to Step 2.

It is well known that the H-MEANS heuristic can stop in a so-called degenerate
solution, i.e., with a partition having less than M non-empty clusters (Spath, 1985 p. 68).
However, such a solution can easily be improved by some insertion strategy (as shown in
Mladenovié¢ and Brimberg, 1996 for Cooper’s Alternate heuristic).

Assume that the current H-MEANS solution is degenerate, i.e., that the number
of clusters in the current solution is M — ¢ (¢ > 0). Then we find the ¢ entities with
largest squared distances to their cluster’s centroid (i.e., the ¢ largest contributions to the
objective function value) and form ¢ new single point clusters with them. The so-obtained
proper (i.e., non-degenerate) solution is obviously better than the degenerate one, but



could possibly be further improved, so H-MEANS iterations continue. The modified H-
MEANS heuristic is referred to as H-MEANS+ and uses the following two last steps instead
of Steps 3 and 4 above:

Step 3'. Local optimality test. If there are changes in assignments, go to Step 4. Otherwise,
a locally optimal partition is found; if it is proper, Stop; if it is degenerate with ¢
empty clusters, select the ¢ points farthest from their centroids, insert them into the
solution as single point clusters and return to Step 2;

Step 4'. Updating. Update centroids T; of each cluster C;, and go to Step 2.

As creation of new clusters reduces the objective function value and the number of
partitions is finite, the H-MEANS+ heuristic converges to a proper locally optimal solution.

3 J-MEANS heuristic

In some problem instances (particularly when M is large), existing points could be centroids
of some clusters in the current solution. We shall refer to them as occupied points. We
next present the rules of the J-MEANS heuristic.

In order to get a neighboring solution of the current one, the centroid z; of a cluster
C; (and not an entity, as in K-MEANS) is relocated to some unoccupied entity location and
all entities of C; relocated to their closest centroid. All possible such moves constitute the
Jump neighborhood of the current solution.

Step 1. (Initialization). Let Py = {C;}, (i = 1,...,M), 7y, (i = 1,...,M) and fop,
be the initial partition of the set X, the corresponding centroids, and the current
objective function value, respectively.

Step 2. (Occupied points). Find unoccupied points, i.e., entities which do not coincide
with a cluster centroid (within a small tolerance).

Step 3. (Jump Neighborhood). Find the best partition P}, and corresponding value f’ in
the jump neighborhood of the current solution Pj;.

Step 4. (Termination or move) If f' > fopt, Stop (a local minimum was found in the
previous iteration); otherwise, move to the best neighboring solution Py, (Pas := Py,
fopt = f') and return to Step 2.

The main step of J-MEANS is Step 3, and its efficient implementation is crucial.
We therefore present it in more detail:

Step 3. (Jump Neighborhood).



e Ezploring the Neighborhood.
For each j (j =1,...,N) repeat the following steps:
a) (Relocation). Add a new cluster centroid Tas41 at some unoccupied entity location
z; and find the index 4 of the best centroid deletion; denote with v;; the change in
the objective function value;
b) (Keep the best). Keep the pair of indices 7’ and j', where v;; is minimum;

e Move. Replace centroid z; by z; and update assignments accordingly to get the
new partition Pj; set f':= fopt + virjr.

It should be noted that the efficiency of the J-MEANS heuristic is largely dependent
on the fact that the relocation step (Step 3a) can be implemented in O(N) time. Similar
results have previously been reported for solving the p-median (Whitaker, 1983, Hansen
and Mladenovié, 1997) and multisource Weber problem (Brimberg et al., 1997).

Observe also that J-MEANS can be viewed as an extended Greedy heuristic. Indeed,
assume that all points are initially assigned to the same cluster, i.e., all M centroids are
located at the same far away point (for example at origin). Then, in each iteration a new
centroid is added, and one deleted from the origin. However, the Greedy heuristic stops
when the number of origin centroids becomes zero, while J-MEANS could continue the
search.

As mentioned above, one can improve each jump neighborhood solution (after com-
pletion of Step 3) by using K-MEANS, H-MEANS, HK-MEANS, or some other heuristic. We
got the best results (within the same computing time) with HK-MEANS (as an improving
procedure within J-MEANS) and we denote the resulting hybrid heuristic with J-MEANS+.

4 VNS heuristic

Variable neighborhood search (VNS) is a recently proposed metaheuristic for solving com-
binatorial problems (Mladenovié, 1995, Mladenovié¢ and Hansen 1997, Hansen and Mlade-
novi¢ 1998). The basic idea is to proceed to a systematic change of neighborhood within a
local search algorithm. The set of neighborhoods are usually induced from one metric func-
tion introduced into the solution space. The algorithm centers the search around the same
solution until another solution better than the incumbent is found and then jumps there.
So it is not a trajectory method as are simulated annealing or tabu search. Neighborhoods
are usually ranked in such a way that solutions increasingly far from the current one are
explored. We may view VNS as an optimization process with a random perturbation rou-
tine, where movement to a neighborhood further from the current solution corresponds to
a larger perturbation. Unlike random restart, VNS allows a controlled increase in the level
of the perturbation.

In the solution space Py (the set of all partitions of X'), we now introduce a distance
p(Pyy, Pyy) between any two solutions Py, Py, € Pur. We first equivalently represent each
solution P as a M-star graph G s, where vertices correspond to entities and centroids
and the entities from the same cluster are connected to the same vertex. Each such graph
has obviously N edges (possibly with loops if some centroids coincide with entities). Let
us denote with G, and G}, M-star graphs that correspond to the solutions Py, and Py,



respectively. Then we say that p(Py,, Py;) = k if and only if G, and G|, differ in k of
their edges. The set of neighborhoods is induced from p(P},, Py;) as follows:

Py € Ni(Par) <= p(Par, Pay) = k.

Note that all points from N7(Pas) correspond to the neighborhood of Py that is used in
the K-MEANS heuristic.

To solve the MSSC problem, we implement a basic VNS that uses a single parameter
(the number of neighborhoods that will be used in the search, k). This VNS heuristic
has the following steps:

Step 1. Initialization. Let Py = {C;} and fop be the initial partition of the set X and
the current objective function, respectively. Choose some stopping condition, and a
value for a parameter k4.

Step 2. Termination. If the stopping condition is met, Stop.
Step 8. First Neighborhood. Set k = 1.
Step 4. Inner loop. If k > k42, return to Step 2.

Step 5. Perturbation. Draw at random a point from Ny (Pyy), i.e., reassign any k entities
from X to other clusters than their own; denote the so-obtained partition with Py,

Step 6. Local search. Apply the J-MEANS local search (with Py, as initial solution); denote
the resulting solution and objective function value with P}, and f”, respectively.

Step 7. Move or Not. If f” < fop, then recenter the search around the better solution
found (fopt = f" and Py = P;;) and go to Step 3. Otherwise, set k = k + 1 and go
to Step 4.

The stopping condition may be e.g. maximum CPU time allowed (%,,4z), maximum number
of iterations, or maximum number of iterations between two improvements. In Section 5
below we use t,.;. Observe that point z’ is generated at random in Step 5 in order to
avoid cycling, which might occur if any deterministic rule was used.

As a local optimum within some neighborhood is not necessarily one within another,
change of neighborhoods can be performed during the local search phase too. In the
computer results section below, we also tested a VNS heuristic (VNS+), that uses the
J-MEANs+ heuristic in Step 6 (instead of J-MEANS).

5 Computational results

The six local search methods, (e.g. K-MEANs, H-MEANS, H-MEANs+, HK-MEANS, J-
MEANs and J-MEANS+), are compared on the basis of equivalent CPU times, i.e., each
local search heuristic is restarted until a given time elapses. VNS and VNS+ start with
the solution obtained by J-MEANS and J-MEANS+ respectively, and use the same CPU
time in their search. Thus, their time limit is twice larger.



All heuristics are coded in FORTRAN 77 and run on a SUN Ultra I System (143-
MHz). In order to decrease running time, compiling is done with the optimizing option,
ie., f77 -cg92 -0j.

The sets of problem instances used in testing are: (i) the well-known 3-dimensional
89-Bavarian postal zones of Spath, (1980); (ii) the famous 4-dimensional 150 iris of Fisher,
(1936); (iii) 1060 and (iv) 3038 points in the plane, taken from the TSP-LIB data base
(Reinelt, 1991). Results on those problems are presented in Tables 1, 2, 3 and 4 respectively.

Optimal Deviation from optimal solution in tmez =1 s. tmaz =2 S.
M solution|K-MEANS H-MEANS H-MEANS+ HK-MEANS J-MEANS J-MEANS- | VNS VNS
216.02547 10T 0.00 7.75 7.75 0.00 0.00 0.00[0.00 0.00
312.94506 10! 23.48 23.48 20.02 20.02 0.00 0.00{0.00 0.00
4|1.04474 10! 0.00 166.86 0.08 0.00 0.00 0.00{0.00 0.00
5(5.97615 10'° 0.00 334.58 0.00 0.00 0.00 0.00(0.00 0.00
6|3.59085 10%° 27.65  593.23 27.65 27.65 0.00 0.00(0.00 0.00
712.19832 10'° 69.39 69.39 0.68 0.00 0.00 0.00(0.00 0.00
8/1.33854 10'°| 141.13 163.43 0.00 0.00 0.00 0.00(0.00 0.00
9| 8.42374 10°| 259.69 276.55 0.00 0.00 0.00 0.00(0.00 0.00
10| 6.44647 10°| 350.65 351.95 0.00 0.00 0.00 0.00(0.00 0.00
11| 5.19798 10°| 436.36  436.73 1.22 1.22 0.00 0.00(0.00 0.00
12| 3.95052 10° 2.42  597.51 1.61 1.61 0.00 0.00(0.00 0.00
13| 2.77802 10°| 869.18  884.82 20.65 20.65 0.00 0.00(0.00 0.00
14| 2.11554 10° 48.48 1186.22 8.36 0.00 0.00 0.00(0.00 0.00
18] 9.80686 10%| 155.73 2588.15 5.61 0.00 0.00 0.00(0.00 0.00
22| 5.42137 10%| 258.59 4726.68 24.14 8.16 0.00 4.71]0.00 0.00
26| 2.82234 108 91.05 9065.67 35.24 15.92 1.56 0.00(0.00 0.00
30| 1.71381 10%| 149.86 14595.74 17.54 12.26 0.29 0.01]0.00 0.00
Average error 169.63 2121.69 10.03 6.32 0.05 0.28]0.00 0.00

Table 1: Min Sum of squares clustering in 89-Bavarian postal zones data.

Optimal solutions for Spéath’s postal zones data are taken from du Merle et al. (1997)
or obtained with the algorithm described there for M > 10; Optimal solutions for Fisher’s
iris data (second column of Table 2) are taken from du Merle et al. (1997). In order to get
best known solutions for the two other data sets (in Tables 3 and 4), we first run VNS+
with #,,4, equal to 10 and 50 minutes for each instance of (iii) and (iv) data respectively.

The % errors reported in the tables are calculated as (f — fopt)/ fopt - 100, where f
and fop; denote the solution found by the heuristic and the optimal solution (in Tables 1
and 2) or the best known solution (in Tables 3 and 4).

The parameter k,q, is set to 10 in all tests. The maximum time allowed for each
run (¢mez) is chosen to be approximately the computing time when no further improvement
in the solution of the fastest heuristic, i.e. K-MEANS is observed (but possibility of some
improvement with a much larger ¢,,,; cannot be ruled out).

Tables 1 to 4 suggest the following conclusions:
(i) Regarding solution quality, the eight methods can be clearly ranked into four groups of

two heuristics: 1. VNS and VNS+, which perform best in all sets of instances; 2. J-
MEANS and J-MEANS+, which are best among local search methods and outperform



Optimal Deuviation from optimal solution in tymer =1 s. tmaz = 2 S.
M| solution |K-MEANS H-MEANS H-MEANS+ HK-MEANS J-MEANS J-MEANS- | VNS VNS-+
2| 153.3470 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00
3| 78.8514 0.00 0.00 0.00 0.00 0.00 0.00|0.00 0.00
4| 57.2284 0.00 0.00 0.00 0.00 0.00 0.00|0.00 0.00
5| 46.4461 0.00 0.00 0.00 0.00 0.00 0.00|0.00 0.00
6| 39.0399 6.83 8.19 0.00 0.00 0.07 0.00|0.00 0.00
7| 34.2982 9.60 9.03 0.36 0.00 0.29 0.00|0.00 0.00
8| 29.9889 18.65 21.40 0.01 0.00 0.00 0.00|0.00 0.00
9| 27.7860 21.52 2.70 1.25 0.00 0.84 0.00|0.00 0.00
10| 25.8340 24.99 9.09 1.58 0.50 1.73 0.000.00 0.00
Average error 9.07 5.60 0.35 0.06 0.33 0.00{0.00 0.00

Table 2: Min Sum of squares clustering in 150 Fisher data.

other methods quite substantially when many clusters are considered; 3. H-MEANS+
and HK-MEANS, which perform much better than the classical local search heuristics
K-MEeANs and H-MEANS; 4. K-MEANS and H-MEANS.

Best known Dewiation from the best known solution in tmaez =10 s. tmaz =20 s.
M|vNs+ (10 m.)|K-MEANS H-MEANS H-MEANS+ HK-MEANS J-MEANS J-MEANS+|VNS VNS+
10| 1.75484 10° 0.03 0.04 0.00 0.00 0.09 0.19|0.04 0.03
20| 7.91794 108 3.96 5.84 1.98 1.38 3.43 0.04|0.83 0.04
30| 4.81251 108 10.51 24.13 11.20 8.53 4.19 1.8210.42  0.05
50| 2.55509 108 16.58 74.76 38.42 25.59 5.34 3.84/1.70  0.32
60| 1.97273 10® 30.47 118.48 38.32 34.24 4.15 4.84(1.30 0.11
70| 1.58450 108 50.44  152.31 58.16 50.83 3.72 3.13|0.82 0.19
80| 1.28890 108 50.96  183.09 64.60 56.94 3.92 4.56|0.19 0.16
90| 1.10417 108 57.30  216.97 67.11 57.19 4.01 3.67|0.56  0.36
100| 9.63781 107 65.13  231.52 47.68 37.32 3.86 3.41/1.06 0.51
110| 8.48458 107 65.72  282.31 48.89 43.92 3.18 4.07|0.44 0.13
120| 7.55997 107 56.17  335.49 53.83 41.41 5.30 3.96/1.63 1.02
130| 6.75542 107 65.48  375.72 56.77 51.76 6.93 6.32|10.93  0.92
140| 6.11216 107 58.31  390.57 45.40 37.35 5.29 5.14|1.49  0.52
150| 5.59256 107 66.50  402.19 42.90 37.40 5.17 4.69(1.02 1.54
Average error 40.99  188.54 39.76 33.17 4.07 3.46|0.89  0.42

(i)

(iii)

Table 3: Min Sum of squares clustering in n=1060 TSP-LIB data.

Large errors are observed for K-MEANS and H-MEANS in the relatively small 89-
Bavarian postal zones problem. They can be explained by the ‘unpleasant’ structure
of this problem. Clusters with a single entity quite often occur in the optimal par-
tition of this problem (Muenchen zone for example for M = 3 and 6, or Muenchen,
Augsburg, Nurenberg and Wuersburg, for M = 13). As a consequence, this solution
is in a deep valley, surrounded and ‘protected’ by local minima with poor values. It
appears that this deep valley is very hard to find by edge exchanges or the alternate
heuristic;

results obtained by H-MEANS are the worst in two among four data sets, but its
modification H-MEANS+ performs much better than both K-MEANS and H-MEANS;



this is specially the case when the number of clusters is large and the degree of
degeneracy is large too; removing degeneracy thus plays an important role in HK-
MEANS hybrid, J-MEANs+ descent and VNS+ too.

Best known Deuviation from the best known solution in tmes =150 s. tmaz =300 s.

M |vNs+ (50 m.)|K-MEANS H-MEANS H-MEANS+ HK-MEANS J-MEANS J-MEANS+|VNS  VNS+
10 5.60251 10° 0.00 0.00 0.00 0.00 0.58 0.00(0.00 0.00
20| 2.66812 10® 2.38 1.58 0.07 0.13 0.05 0.18]0.05 0.00
30| 1.75598 108 1.00 3.98 1.26 0.94 0.51 0.830.51 0.83
40| 1.26107 108 7.43 8.52 4.23 1.93 1.71 1.09|1.38 1.09
50| 9.89439 107 11.18 16.04 3.50 3.06 1.68 1.86|1.68 1.53
100| 4.77197 107 48.60 48.30 13.52 8.35 4.53 3.7213.21 1.77
150| 3.05573 107| 101.27 89.44 21.60 15.08 4.95 3.84|2.84 2.27
200| 2.19186 107| 160.26  132.73 35.51 17.27 5.65 4.57|3.65 3.01
250| 1.66603 107| 215.14  185.41 45.96 31.83 6.07 3.34|2.96 1.73
300| 1.33540 107| 255.90  230.19 47.19 33.16 6.45 4.01(3.43 1.93
350| 1.10979 107| 289.04  259.65 36.01 25.82 6.39 4.46|2.61 2.64
400 9.41168 10°| 305.20  308.01 48.29 31.92 7.09 4.994.38 4.38
450| 8.22641 10°| 308.49  345.80 44.45 29.59 6.63 4.64|3.23 3.37
500| 7.23506 10°| 320.70  353.34 38.83 26.69 6.58 3.9813.28 2.51
Average error 131.22 125.36 23.20 15.31 4.02 2.89|2.30 1.89

Table 4: Min Sum of squares clustering in n=3038 TSPLIB data.

In Table 5 the number of restarts of each method, within 1 second, for Fisher’s
problem is given. We do not report on number of restarts for other test problems, because
similar trends are observed. Note first that the number of restarts corresponds to the
number of local minima found (not necessary all different) within a given time limit. It
can be seen that the fastest local search descent is K-MEANS, followed by H-MEANS.
However, the solution quality of these two methods is worst. The slowest among the eight
methods compared is J-MEANS, i.e., it performs more iterations in one restart than others.
Comparing the rate of convergence to a local minimum of J-MEANS and J-MEANS+, one
can see that J-MEANS+ is twice faster, despite the fact that it needs much more time for
one iteration (J-MEANS+ uses HK-MEANS in addition to J-MEANS). Since the solutions
obtained by J-MEANS+ are of better quality than those of J-MEANS, we conclude that
change of the neighborhood structures within local search can be useful. Similar trends
can be observed when comparing VNS and VNS+.

In Table 5 it can also be seen that VNS (which uses J-MEANS in its Step 6) finds
much more local optima than J-MEANS alone within the same computing time (compare
33 and 113, the average number of restarts of J-MEANS and VNS respectively). This is one
of the main reasons why the VNS metaheuristic is effective. It exploits the fact that local
minima of good quality are close one to another. In order to get a new local minimum,
instead of performing many iterations for each random restart, in VNS we perform only a
few iterations, since the incumbent is already in a ’deep valley’ of the solution space.

We observe also the so-called central limit catastrophe (Baum, 1986) in the previous
local search heuristics’ performance: when problems grow large, random local minima are
almost surely of ‘average’ quality and increasing the number of restarts does not help much.
This weakness of the multi-start approach has been observed earlier for other combinatorial
problems (see for example Boese et al., 1994, for travelling salesman and graph bisection



Number of local searches (restarts) in 1 second

M | K-MEANS H-MEANS H-MEANS+ HK-MEANS J-MEANS J-MEANS+ [ VNS VNS+
2 1425 1329 1339 1094 61 113|164 222
3 1317 609 553 488 28 98121 208
4 721 497 459 393 46 92134 195
5 796 462 488 385 34 62110 156
6 654 438 387 307 30 64101 160
7 505 402 348 271 26 45106 114
8 364 353 316 242 25 40 92 118
9 286 312 292 220 27 45| 99 122
10 257 280 280 205 25 40| 89 121
Average 700 527 504 406 33 66113 157

Table 5: Number of restarts in 1 second for Fisher data.

problems, Hansen and Mladenovi¢, 1997, for p-Median problem and Brimberg et al 1997,
for Multisource Weber problem). In Table 6, typical trends are shown on the 150 and
1060-entities problems. Each row of the table presents the average error for a different
value of t,,4,- Like in previous tables, the maximum running time for VNS and VNS+ are
again twice larger than for the other heuristics, i.e., they start with multistart J-MEANS
and J-MEANS+ solutions and try to improve them in the same CPU time. It appears that
VNS and VNS+ are able to improve substantially the quality of the solution when t,,,,
increases, while other methods do not.

N tmae | K-MEANS H-MEANS H-MEANS+ HK-MEANS J-MEANS J-MEANS- | VNS VNS
0.1 9.28 15.76 0.92 0.82 1.47 0.34(0.18 0.15

0.2 9.28 10.51 0.66 0.36 0.50 0.060.00 0.06

0.5 9.09 8.55 0.46 0.16 0.33 0.060.00 0.00

150 1.0 9.07 5.60 0.35 0.06 0.33 0.00(0.00 0.00
2.0 9.07 3.22 0.20 0.06 0.12 0.00{0.00 0.00

5.0 9.00 2.27 0.20 0.01 0.05 0.00{0.00 0.00

10.0 9.00 1.22 0.09 0.01 0.01 0.00{0.00 0.00

2.0 46.24 202.54 46.81 36.76 4.96 4.41(4.48 3.87

5.0 44.21 189.43 43.78 34.55 4.41 3.53(3.47 2.66

10.0 40.99 188.54 39.76 33.17 4.07 3.4612.99 2.00

1060 20.0 38.23 174.50 38.23 31.36 3.17 2.7011.94 1.35
50.0 35.50 172.08 34.84 28.29 2.80 2.14|1.14 0.95
100.0 34.47 169.50 33.37 26.17 2.46 2.03(0.73 0.59

Table 6: Min Sum-of-squares clustering for N=150 Fisher and for N=1060 TSPLIB data:
average errors for different maximum running time t,,; (in seconds).

6 Conclusions.

The well-known K-MEANS and H-MEANS heuristics for MSSC can give very poor results
when one seeks partitions into many clusters. Indeed, it is not uncommon to get objective
function values several times larger than the optimal ones. Moreover, experiments show
that this may happen even for data sets of moderate size (e.g. the 89 Bavarian postal
zones).
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New heuristics, based on a different type of move, i.e., centroid-to-entity relocation
give much better results. For moderate size problems they get the optimal solution in most
cases. Moreover, embedding these heuristics in the VNS metaheuristic framework, yields
improved methods which always gave optimal solution for the two data sets considered
(89 postal zones and Fisher’s 150 iris) where they are known. For larger data sets, very
good solutions (within 1 or 2 percent of the best known ones) are obtained in moderate
computing time (they can be improved a bit by running the heuristics for a much longer
time). Average errors (relative to the best known solution) with the best heuristic (VNS+)
are over 60 times smaller than those of H-MEANS and K-MEANS. So J-MEANS and the
related J-MEANS+ and VNS+ appear to be good alternatives.
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