

 S tart S ecure. S tay S ecure.™

Hybrid Analysis
An Approach to Testing Web Application Security

By SPI Labs

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

ii

Hybrid Analysis

Table of Contents

Abstract 3

Introduction 4

Source Code Analysis 4

Compiled Languages 6
Limitations of Source Code Analysis 8

Black Box Testing 9

Dynamic Analysis 11
Runtime Analysis 12
Limitations of Black Box Testing 13

Hybrid Analysis 14

Conclusion 16

About SPI Labs 18

About SPI Dynamics Incorporated 19

Contact Information 19

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

3

Hybrid Analysis

Abstract
Testing Web applications for security defects is now considered a necessary

part of the development process. However, none of the traditional methods

of automated security testing provides comprehensive security coverage and

accurate results for Web applications. While source code analysis is capable

of finding insecure programming practices that have potentially rendered the

code vulnerable to malicious attacks, it can be limited by the types of

languages that have been utilized in crafting the Web application and can

only find potential vulnerabilities rather than actionable results. While black

box testing techniques are beneficial because they eliminate language

dependency and the need for parsing the source or binary code into an

analyzable form, they are also limited by the fact that do not have access to

the source code, and if unable to "guess" where some pages or files are

located, can provide a false sense of security by producing num erous ―false

negatives‖. O nly an approach that com bines the strengths of both source

code analysis and black box testing can be used to produce secure Web

applications. This hybrid analysis approach can provide broad code coverage,

identify all points of input to an application, track data as it moves through

an application, and then validate the vulnerabilities it does find, ultimately

resulting in more accurate results. Developers should look toward hybrid

analysis tools that combine the depth of source code analysis with the

accuracy of black box testing to help them secure code more easily and

confidently.

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

4

Hybrid Analysis

Introduction
As reliance on the Web as a conduit for business processes and as a method

for conducting day to day transactions has grown tremendously in the past

few years, there has also been a corresponding growth in the number of

attacks upon Web applications. After an initial delay in responding to this

threat, developers are now aware of the need for their Web applications to

operate securely, and are taking measures to secure their applications before

their products are released. A variety of tools have been developed whose

sole purpose is to help developers secure their Web application code.

Generally, secure development tools fall into two categories: those that

perform source code analysis to find common security coding mistakes, and

those used to implement black box testing, which gather information about

an application via the data that is returned from it much as an actual user (or

attacker) would. The tools that are available to support secure development

endeavors, however, are still works in progress. While each method of

testing has inherent strengths, each method also has significant weaknesses.

The aim of this paper is to detail the benefits and limitations of each

approach, and describe why an application that utilizes a methodology of

hybrid analysis consisting of both approaches is the most effective method of

creating secure Web applications in development.

Source Code Analysis
Source code analysis is an approach for verifying application code

syntactically and semantically for known vulnerable programming constructs

without actually having to execute the code. The main focus of source code

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

5

Hybrid Analysis

analysis is to ensure that all inputs to an application are verified and that it

utilizes its API in a secure manner. The focus of an automated source code

security analysis is essentially to find bad programming practices that have

potentially rendered the code vulnerable to malicious attacks. Source code

analysis can be seen as white box testing or a proactive approach where the

application is tested and secured regardless of whether or not it can be

practically exploited.

Source code analysis is very effective at enforcing secure coding standards

and improving overall code quality and application performance. Some of the

security checks that source code analysis is effective at finding are listed

below:

 Detecting input data points

 Identifying the use of insecure methods

 Verifying application programming interface (API) calls

 Checking memory allocation

 Identifying misconfiguration

 Identifying critical parameters

 Tracing information flow

The primary requirement of source code analysis is to parse the code

correctly to understand the semantics of the code segment. Source code

analysis is traditionally performed by the developer during the compile phase

utilizing the parsing and analysis steps that are already taking place. It is

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

6

Hybrid Analysis

also important to verify application output data points. Consider a scenario

where the same database is shared between two applications. If one

application is successfully attacked and an attacker manages to insert

malicious data in the database, the second application retrieves that data

and gets exploited even though all its inputs were verified.

Depending on the nature of the programming language used during

development, tools can be divided into two categories: compiled languages,

and interpreted languages.

Compiled Languages

Compiler Augmentation

Stackguard, stackshield, RATS, and ITS4 are some of the common source

code analysis tools for detecting buffer overflows and insecure library

function uses in C source code. PMD and FindB ugs™ are som e of the tools

that can be utilized for Java code analysis. Some tools provide support for C#

alone, but few tools provide support for all three languages of the .NET

Framework (C#, J# and VB).

Finding and fixing potential bugs before an application is executed helps the

developer to keep the system inherently secure. It is convenient to define

security checks with access to high level code while compiling. Consider an

example where you would like to define a rule to verify every SQL query

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

7

Hybrid Analysis

before it is executed. A simple source code analysis check (as opposed to

trying to exploit every parameter and see if it results in database error) can

identify all of the relevant SQL statements and wrap them with appropriate

validation:

Find: SQLExecute(SQLqueryString)

Replace With : if(Regexobj.Match(SQLqueryString))

 SQLExecute(SQLqueryString)

The following graphic represents the typical phases of the compilation

process.

Figure 1 Phases of Compiler

The program code is syntactically and semantically verified in the source

code analyzer and represented with an intermediate format. With source

code analysis, it is possible to enforce secure programming rules such as

naming conventions, variable declaration, and proper usage of library

functions during the static checker step.

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

8

Hybrid Analysis

Limitations of Source Code Analysis

At first glance, source code analysis would seem to be the most suitable

approach to enforce secure programming practices. Still, though, researchers

have been unable to accurately find and remediate all the vulnerabilities from

code statically. Some of the main limiting factors are tracking dynamic

binding, dynamically resolved execution paths or interpreting scripting

languages. Dynamic binding is a common implementation style especially in

object oriented languages where the abstract method or interface methods

can have multiple implementations due to polymorphism. Another reason is

that a variety of languages are often used to code applications. Source code

needs to be parsed before it can be checked and security checks need to be

represented with what is available from the parser and compiler tools. This

not only delays the process of security support for newer languages, but also

makes identifying possible exploits in that language an issue.

A majority of current source code security checks fall into the category of

whether a particular method is called or not. Or, whenever a variable is

declared, enforcing the type specific range and performing value validation

on them, and so forth. The actual vulnerability detection is either left to be

discovered during runtime or otherwise not done with accuracy. However, if

traditional compiler intelligence is combined with a security analysis to

perform interprocedural analysis of the data, a lot more can be achieved. A

precise flow of input and all the computation it may affect, be it a SQL query

execution or HTTP response construction that can eventually cause SQL

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

9

Hybrid Analysis

injection or Cross Site Scripting, can only be achieved by incorporating

interprocedural data and control flow analysis. Unless these techniques are

included, any analysis of how data flows into the system will be incomplete.

Most scripting languages such as PHP, JavaScript, VBScript, Perl and Python

are interpreted languages and are loosely data typed. In a loosely typed

language the data type is not enforced at the time of compilation, meaning

that a defined variable can contain varying types of data at runtime such as

an integer or string. This makes it even harder to enforce type and range

specific security validation on them. PHP can even accept an array for a

scalar value at runtime and cause the application to generate an exception

which may not be handled well, causing the application to behave in an

unexpected and vulnerable way. An effective method to test this category is

still an open research issue because script is integrated in the HTML page and

semantics are interpreted depending on the dynamic state at the time that

statement is executed.

Black Box Testing
Black box testing analyzes the application from the actual view of the user

(and also a potential hacker), and not the developer of the application. The

method of gathering information about the application is via the user

interface or through requests made directly to the Web server. Runtime and

dynamic analysis can be thought of as forms of black box testing. One of the

main advantages of black box testing is that it eliminates language

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

10

Hybrid Analysis

dependency and the need for parsing the source or binary code into an

analyzable form. It is also unbiased since the tester can bd independent of

the developer or designer of the application. Furthermore, black box testing

can also identify vulnerabilities in a third-party component or database code

that source code analysis would not uncover since it does not have access to

the third-party com ponent’s source code.

Wherever there is an opportunity to inject malicious user input, the black box

testing application injects it and analyzes the response to take further action.

A successful attack gives direct access to the target system but an

unsuccessful attack can generate an unhandled exception that may also give

an attacker a potential vulnerability to exploit. Many times an unfiltered error

message exposes critical information regarding the server and how the

application is configured, giving the user access to server code and helping

them to inject malicious data in a more focused manner. Guessing every

possible input combination is unrealistic, though. It is resource intensive and

in reality is ultimately impractical. Consider the Web application form with 15

input fields on it (very common when you are applying for college

admissions, or a mortgage application). All the fields are validated but one.

The attack is still possible but only if you enter correct data in 14 fields and

malicious data in the 15th. There is a fair chance that the vulnerability would

go undetected even after multiple attempts. However, a source code analysis

tool could prevent that because it finds and wraps every input coming into

the Web application into a validation filter.

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

11

Hybrid Analysis

Dynamic Analysis

Also known as automated penetration or fuzz testing, dynamic analysis

occurs when a security tool actively attacks the running application based on

thousands of known vulnerabilities and attack patterns. A dynamic analysis

tool executes thousands of attacks on the application in a matter of minutes,

just as a hacker would over days or weeks. Some of the potential security

issues that dynamic analysis is adept at locating follow:

 Exception handling

 Parameter manipulation

 Buffer overflows

 Cookie manipulation

 Session state management

 Proper validation of input

Security defects that are found by fuzz testing techniques are often highly

dangerous and readily exploitable vulnerabilities that could be leveraged by

actual attackers to inflict critical damage upon an application.

The danger of taking only the dynamic analysis approach is that it can be

less thorough than source code analysis because it does not have access to

or detailed knowledge of the application source code. Dynamic analysis tools

crawl an application like a Web spider to discover all of its pages and files

and then uses this site map to direct automated attack attempts. If the tool

is unable to "guess" where some pages or files are located, or is blocked by

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

12

Hybrid Analysis

complex authentication or session management, then it would not be able to

effectively attack and assess the security of those hidden resources. The

developer can then end up with a false sense of security.

Runtime Analysis

Runtime analysis takes the results of the application execution and analyzes

them to find unusual or unexpected responses. These analysis tools simulate

a vulnerable input scenario and test the application behavior against it. Some

of the Web application vulnerabilities that runtime analysis is effective in

detecting follow:

 Command injection

 Server misconfiguration

 Certificate analysis

 Cross-Site scripting

 HTTP compliance

 Encryption strength

As mentioned earlier, script languages or dynamically generated contents

have limitations with source code analysis. A runtime approach can unfold

what is not known statically.

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

13

Hybrid Analysis

Limitations of Black Box Testing

The biggest challenge in black box testing comes from predicting the input

space for the application. The majority of black box Web application tools

send malformed requests or inject malicious data into input fields and then

analyze the response. Let’s consider an exam ple of S Q L Injection . Many

companies allow Internet access to archives of their press releases. A URL for

accessing the com pany’s fifth press release m ight look like this:

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5

The SQL statement the Web application would use to retrieve the press

release might look like this (the client-supplied input is underlined):

SELECT title, description, releaseDate, body FROM pressReleases
WHERE pressReleaseID = 5

The database server responds by returning the data for the fifth press

release. The Web application will then format the press release data into an

HTML page and send the response to the client. To determine if the

application is vulnerable to SQL injection, an attacker would likely try

injecting an extra true condition into the WHERE clause. For example, if you

request this URL...

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND
1=1

and if the database server executes the following query…

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

14

Hybrid Analysis

SELECT title, description, releaseDate, body FROM pressReleases
WHERE pressReleaseID = 5 AND 1=1

… and if this query also returns the same press release, then the application is

susceptible to S Q L injection. Part of the user’s input is interpreted as S Q L

code. Unless the tool enters the correct input, the vulnerability would be

missed.

Hybrid Analysis
It is easy to see the importance of both source code analysis and black box

testing when building secure Web applications. It is also clear that neither

method by itself offers a complete solution. Source code analysis makes sure

that every possible execution path is tested. However, any dynamic change

limits how far it can go. Dynamic and runtime analysis make sure that

dynamic decisions are not exploitable. However, neither can ensure full code

coverage. Black box testing used in conjunction with source code analysis

produces much more accurate results than either approach in isolation.

Think of a cross-site scripting vulnerability whereby an attacker is able to

embed malicious code into an application and trick a user into executing the

code on their own machine. A source code analysis product might be able to

identify the potential of a cross-site scripting vulnerability by finding un-

validated inputs or poor session handling – if the particular language and

compiler is supported. Consider the login page which would be displayed as a

result of this URL:

http://host/login.php?error=Invalid%20User%20Name:%20Bob

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

15

Hybrid Analysis

The resulting page would display something like this:

Invalid User Name: Bob

If the value of the parameter 'error' was altered to contain JavaScript, and if

the input was not validated, numerous malicious tasks could be executed

because the user input is dynamically included in the page, as evidenced by

the redisplay of the User Name value. Many source code analyzers would

recognize that as a potential vulnerability. But what if the user input was

stored in a database and then retrieved for processing later? Or what if that

input was displayed on a different page than the one on which it was

submitted? A source code analysis of that code would likely miss both of

those problems. The converse of properly validating input can also be

problematic for source code analyzers. There are many possible ways to code

for validation of input. For example, developers can set up rules to define

accepted characters, or set up operations to convert all input into their

equivalent HTML entities. Source code analysis would have a hard time

accounting for all of these methods across all the languages which could be

utilized.

Source code analysis can certainly find possible avenues for cross-site

scripting, but it has a much harder job validating that an actual vulnerability

exists. Efforts can be misdirected or wasted when developers spend time

fixing a potential vulnerability that in reality is not even exploitable in the

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

16

Hybrid Analysis

application. A hybrid analysis tool, which will know about the cross-site

scripting possibility from an analysis of the source code, will target this

potential vulnerability during the dynamic analysis phase to accurately verify

whether the page is exploitable by attempting to hack it. For a simple

example, a black box testing tool might submit the following script to the

login form in the example listed earlier:

<script>alert<’XSS’></script>

By submitting executable script, the tool can determine that the potential

vulnerability identified during the source code analysis is an actual,

exploitable vulnerability. However, only a combination of source code

analysis and black box testing would find this vulnerability if the information

was stored in a database and processed later, or otherwise executed on a

different page. Hybrid analysis would first find the potential vulnerability, and

then verify it by tracking the submitted data throughout the application.

Conclusion
Source code analysis tools and black box testing alone are only a partial

solution when developing secure web applications. Therefore, we would

suggest that a hybrid approach would be the best path to take when testing

a Web application for potential security issues. A hybrid analysis approach

combines black box testing with source code analysis to reduce false

positives and find more vulnerabilities during development. The source code

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

17

Hybrid Analysis

analysis phase discovers the application’s attack surface and identifies all

potential vulnerabilities. The black box testing phase uses the intelligence

gleaned from the source code analysis to execute a series of attacks using

automated hacking techniques that eliminate false positives and yield the

actual exploitable security vulnerabilities in the application. Only an approach

that combines the strengths of both source code analysis and black box

testing can be used to produce secure Web applications. Developers should

look toward hybrid analysis tools that combine the depth of source code

analysis with the accuracy of black box testing to help them secure code

more easily and confidently.

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

18

Hybrid Analysis

About SPI Labs
SPI Labs is the dedicated application security research and testing team of

SPI D ynam ics. C om posed of som e of the industry’s top security experts, SPI

Labs is specifically focused on researching security vulnerabilities at the Web

application layer. The SPI Labs mission is to provide objective research to the

security community and give organizations concerned with their security

practices a method of detecting, remediating, and preventing attacks upon

the Web application layer.

SPI Labs’ industry leading security expertise is evidenced via continuous

support of a combination of assessment methodologies used to produce the

most accurate web application vulnerability assessments available. This

direct research is utilized to provide daily updates to S PI D ynam ics’ suite of

security assessment and testing software products. These updates include

new intelligent engines capable of dynamically assessing web applications for

security vulnerabilities by crafting highly accurate attacks unique to each

application and situation, and daily additions to the w orld’s largest database

of more than 5,000 application layer vulnerability detection signatures and

agents. SPI Labs engineers comply with the standards proposed by the

Internet Engineering Task Force (IETF) for responsible security vulnerability

disclosure. Information regarding SPI Labs policies and procedures for

disclosure are outlined on the SPI Dynamics Web site at:

http://www.spidynamics.com/spilabs.html.

http://www.spidynamics.com/spilabs.html

 S tart S ecure. S tay S ecure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

19

Hybrid Analysis

About SPI Dynamics Incorporated
Start Secure. Stay Secure.

Security Assurance Throughout the Application Lifecycle.

S PI D ynam ics’ suite of Web application security products help organizations

build and maintain secure Web applications, preventing attacks that would

otherw ise go undetected by today’s traditional corporate Internet security

m easures. The com pany’s products enable all phases of th e software

development lifecycle to collaborate in order to build, test and deploy secure

Web applications. In addition, the security assurance provided by these

products help Fortune 500 companies and organizations in regulated

industries — including financial services, health care and government —

protect their sensitive data and comply with legal mandates and regulations

regarding privacy and information security. Founded in 2000 by security

specialists, SPI Dynamics is privately held with headquarters in Atlanta,

Georgia. For more information, visit www.spidynamics.com or call (678) 781-

4800.

Contact Information

SPI Dynamics Telephone: (678) 781-4800

115 Perimeter Center Place Fax: (678) 781-4850

Suite 1100 Email: info@spidynamics.com

Atlanta, GA 30346 Web: www.spidynamics.com

