
MAHALANOBIS DISTANCE

Def. The euclidian distance between two points x =
(x1, . . . , xp)

t and y = (y1, . . . , yp)
t in the p-dimensional space

R
p is defined as

dE(x, y) =
√

(x1 − y1)2 + · · · + (xp − yp)2 =
√

(x − y)t(x − y)

and dE(x, 0) = ‖x‖2 =
√

x2
1 + · · · + x2

p =
√

xtx is the euclidian

norm of x.

It follows immediately that all points with the same distance of
the origin ‖x‖2 = c satisfy x2

1 + · · ·+x2
p = c2 which is the equation

of a spheroid. This means that all components of an observation x
contribute equally to the euclidian distance of x from the center.
However in statistics we prefer a distance that for each of the com-

ponents (the variables) takes the variability of that variable into
accountwhen determining its distance from the center. Compo-

nents with high variability should receive less weight than compo-
nents with low variability. This can be obtained by rescaling the

components
Denote

u = (
x1

s1
, . . . ,

xp

sp
) and v = (

y1

s1
, . . . ,

yp

sp
)

then define the distance between x and y as

d(x, y) = dE(u, v) =

√
(
x1 − y1

s1
)2 + · · · + (

xp − yp

sp
)2 =

√
(x − y)tD−1(x − y)

where D = diag(s2
1, . . . , s

2
p). Now the norm of x equals

‖x‖ = d(x, 0) = dE(u, 0) = ‖u‖2 =

√
(
x1

s1
)2 + · · · + (

xp

sp
)2 =

√
xtD−1x
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and all points with the same distance of the origin ‖x‖ = c satisfy

(
x1

s1
)2 + · · · + (

xp

sp
)2 = c2

which is the equation of an ellipsoid centered at the origin with

principal axes equal to the coordinate axes.

Finally, we also want to take the correlation between vari-
ables into account when computing statistical distances. Corre-

lation means that there are associations between the variables.
Therefore, we want the axes of ellipsoid to reflect this correlation.

This is obtained by allowing the axes of the ellipsoid at constant
distance to rotate. This yields the following general form for the
statistical distance of two points

Def. The statistical distance or Mahalanobis distance between
two points x = (x1, . . . , xp)

t and y = (y1, . . . , yp)
t in the p-

dimensional space R
p is defined as

dS(x, y) =
√

(x − y)tS−1(x − y)

and dS(x, 0) = ‖x‖S =
√

xtS−1x is the norm of x.

Points with the same distance of the origin ‖x‖S = c satisfy

xtS−1x = c2

which is the general equation of an ellipsoid centered at the origin.

In general the center of the observations will differ from the origin
and we will be interested in the distance of an observation from

its center x̄ given by dS(x, x̄) =
√

(x − x̄)tS−1(x − x̄).
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Result 1. Consider any three p-dimensional observations x, y
and z of a p-dimensional random variable X = (x1, . . . , Xp)

t.
The Mahalanobis distance satisfies the following properties

• dS(x, y) = dS(y, x)

• dS(x, y) > 0 if x �= y

• dS(x, y) = 0 if x = y

• dS(x, y) ≤ dS(x, z) + dS(z, y) (triangle inequality)



MATRIX ALGEBRA

Def. A p-dimensional square matrix Q is orthogonal if

QQt = QtQ = Ip or equivalently Qt = Q−1

This implies that the rows of Q have unit norms and are or-

thogonal. The columns have the same property.

Def. A p-dimensional square matrix A has an eigenvalue λ with
corresponding eigenvector x �= 0 if

Ax = λx

If the eigenvector x is normalized, which means that ‖x‖ = 1,
then we will denote the normalized eigenvector by e.

Result 1. A symmetric p-dimensional square matrix A has p
pairs of eigenvalues and eigenvectors

(λ1, e1), . . . , (λp, ep).

The eigenvectors can be chosen to be normalized (et
1e1 = · · · =

et
pep = 1) and orthogonal (et

iej = 0 if i �= j). If all eigenvalues
are different, then the eigenvectors are unique.
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Result 2. Spectral decomposition
The spectral decompositon of a p-dimensional symmetric square
matrix A is given by

A = λ1e1e
t
1 + · · · + λpepe

t
p

where (λ1, e1), . . . , (λp, ep) are the eigenvalue/normalized eigen-
vector pairs of A.

Example Consider the symmetric matrix

A =


13 −4 2
−4 13 −2

2 −2 10




From the characteristic equation |A−λI3| = 0 we obtain the eigen-
values λ1 = 9, λ2 = 9, and λ3 = 18 The corresponding normalized

eigenvectors are solutions of the equations Aei = λiei for i = 1, 2, 3.
For example, with e3 = (e13, e23, e33)

t the equation Ae3 = λ3e3 gives

13e13 − 4e23 + 2e33 = 18e13

−4e13 + 13e23 − 2333 = 18e23

2e13 − 2e23 + 10e33 = 18e33

Solving this system of equations yields the normalized eigenvector

e3 = (2/3,−2/3, 1/3). For the other eigenvalue λ1 = λ2 = 9 the
corresponding eigenvectors are not unique. An orthogonal pair is

given by e1 = (1/
√

2, 1/
√

2, 0)t and e2 = (1/
√

18,−1/
√

18,−4/
√

18).
With these solutions it can now easily be verified that

A = λ1e1e
t
1 + λ2e2e

t
2 + λ3e3e

t
3

Def. A symmetric p × p matrix A is called nonnegative defi-
nite if

0 ≤ xtAx for all x ∈ R
p.

A is called positive definite if

0 < xtAx for all x �= 0.
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It follows (from the spectral decomposition) that A is positive

definite if and only if all eigenvalues of A are strictly positive and
A is nonnegative definite if and only if all eigenvalues are greater

than or equal to zero.

Remark The Mahalanobis distance of a point was defined as

d2
S(x, 0) = xtS−1x which does implies that all eigenvalues of the

symmetric matrix S−1 have to be positive.

From the spectral decomposition we obtain that a symmetric pos-

itive definite p-dimensional square matrix A equals

A =

p∑
i=1

λieie
t
i = PΛP t

with P = (e1, . . . , ep) a p-dimensional square matrix whose columns
are the normalized eigenvectors of A and Λ = diag(λ1, . . . , λp) a

p-dimensional diagonal matrix whose diagonal elements are the
eigenvalues of A. Note that P is an orthogonal matrix. It follows

that

A−1 = PΛ−1P t =

p∑
i=1

1

λi
eie

t
i

and we define the square root of A by

A1/2 =

p∑
i=1

√
λieie

t
i = PΛ1/2P t

Result 3. The square root of a symmetric, positive definite p×p

matrix A has the following properties

• (A1/2)t = A1/2 (that is, A1/2 is symmetric).

• A1/2A1/2 = A.

• A−1/2 = (A1/2)−1 =
∑p

i=1
1√
λi

eie
t
i = PΛ−1/2P t

• A1/2A−1/2 = A−1/2A1/2 = Ip

• A−1/2A−1/2 = A−1
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Result 4. Cauchy-Schwarz inequality
Let b, d ∈ R

p be two p-dimensional vectors, then we have that

(btd)2 ≤ (btb)(dtd)

with equality if and only if there exists a constant c ∈ R such

that b = cd.

Result 5. Extended Cauchy-Schwarz inequality
Let b, d ∈ R

p be two p-dimensional vectors and B a p-

dimensional positive definite matrix, then

(btd)2 ≤ (btBb)(dtB−1d)

with equality if and only if there exists a constant c ∈ R such

that b = cB−1d.

Proof. The result is obvious if b = 0 or d = 0. For other cases we

use that
btd = btB1/2B−1/2d = (B1/2b)t(B−1/2d)

and apply the previous result to (B1/2b) and (B−1/2d).

Result 6. Maximization Lemma

Let B be a p-dimensional positive definite matrix and d ∈ R
p a

p-dimensional vector, then

max
x�=0

(xtd)2

xtBx
= dtB−1d

with the maximum attained when there exists a constant c �= 0
such that x = cB−1d

Proof. From the previous result, we have that

(xtd)2 ≤ (xtBx)(dtB−1d)
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Because x �= 0 and B positive definite, xtBx > 0, which yields

(xtd)2

xtBx
≤ dtB−1d

for all x �= 0. From the extended Cauchy-Schwarz inequality we

know that the maximum is attained for x = cB−1d.

Result 7. Maximization of Quadratic forms

Let B be a p-dimensional positive definite matrix with eigen-
values λ1 ≥ λ2 ≥ · · · ≥ λp > 0 and associated normalized

eigenvectors e1, . . . , ep. Then

max
x�=0

xtBx

xtx
= λ1 (attained when x = e1)

min
x�=0

xtBx

xtx
= λp (attained when x = ep)

More general,

max
x⊥e1,....ek

xtBx

xtx
= λk+1 (attained when x = ek+1, k = 1, . . . , p − 1)

Proof. We will proof the first result. B = PΛP t and denote y =

P tx. Then x �= 0 implies y �= 0 and

xtBx

xtx
=

ytΛy

yty
=

∑p
i=1 λiy

2
i∑p

i=1 y2
i

≤ λ1

Now take x = e1, then y = P te1 = (1, 0, . . . , 0)t such that

ytΛy/yty = λ1.

Remark Note that since

max
x�=0

xtBx

xtx
= max

‖x‖=1
xtBx

the prevoius results shows that λ1 is the maximal value and λp is
the smallest value of the quadratic form xtBx on the unit sphere.
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Result 8. Singular Value Decomposition
Let A be a (m×k) matrix. Then there exist an m×m orthogonal
matrix U , a k × k orthogonal matrix V and an m × k matrix Λ

with entries (i, i) equal to λi ≥ 0 for i = 1, . . . , r = min(m, k)
and all other entries zero such that

A = UΛV t =
r∑

i=1

λiuiv
t
i.

The positive constants λi are called the singular values of A.
The (λ2

i , ui) are the eigenvalue/eigenvector pairs of AAt with

λr+1 = · · · = λm = 0 if m > k and then vi = λ−1
i Atui.

Alternatively, (λ2
i , vi) are the eigenvalue/eigenvector pairs of AtA

with λr+1 = · · · = λk = 0 if k > m



RANDOM VECTORS

Suppose that X = (X1, . . . , Xp)
t is a p-dimensional vector of ran-

dom variables, also called a random vector. Each of the compo-

nents of X is a univariate random variable Xj (j = 1, . . . , p) with
its own marginal distribution having expected value µj = E[Xj]
and variance σ2

j = E[(Xj − µj)
2].

The expected value of X is then defined as the vector of
expected values of its components, that is

E[X] = (E[X1], . . . , E[Xp])
t = (µ1, . . . , µp)

t = µ.

The population covariance matrix of X is defined as

Cov[X] = E[(X − µ)(X − µ)t] = Σ.

That is, the diagonal elements of Σ equal E[(Xj − µj)
2] = σ2

j .
The off-diagonal elements of Σ equal E[(Xj − µj)(Xk − µk)] =
Cov(Xj, Xk) (j �= k) = σjk, the covariance between the variables

Xj and Xk. Note that σjj = σ2
j .

The population correlation between two variables Xj and Xk is

defined as
ρjk =

σjk

σjσk

and measures the amount of linear association between the two
variables.
The population correlation matrix of X is then defined as

ρ =




1 ρ12 . . . ρ1p

ρ21 1 . . . ρ2p
...

... . . . ...
ρp1 ρp2 . . . 1


 = V −1ΣV −1

with V = diag(σ1, . . . , σp).
It follows that Σ = V ρV
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Result 1. Linear combinations of random vectors
Consider X a p-dimensional random vector and c ∈ R

p then ctX
is a one-dimensional random variable with

• E[ctX] = ctµ

• Var[ctX] = ctΣc

In general, if C ∈ R
q×p then CX is a q-dimensional random

vector with

• E[CX] = Cµ

• Cov[CX] = CΣC t


